COMS0018: PRACTICAL2

Dima Damen
Dima.Damen@bristol.ac.uk

Bristol University, Department of Computer Science
Bristol BS8 1UB, UK

October 13, 2019
CIFAR-10

- Dataset size: 60,000 images
- Training split: 50,000 images
- Test split: 10,000 images (1000 from each class) (balanced)

1http://groups.csail.mit.edu/vision/TinyImages/
CIFAR-10

- Dataset size: 60,000 images
- Training split: 50,000 images
- Test split: 10,000 images (1000 from each class) *(balanced)*
- Input size: 32×32 RGB images - $32 \times 32 \times 3 = 3072$ *(tiny images)*
- These have been collected by Rob Fergus, Antonio Torralba and Bill Freeman from MIT in 2008

1. http://groups.csail.mit.edu/vision/TinyImages/
CIFAR-10

http://www.cs.toronto.edu/~kriz/cifar.html

Dima Damen
Dima.Damen@bristol.ac.uk
COMSM0018: Lab2 Practical - 2019/2020
CIFAR-10

The current state-of-the-art results on CIFAR-10 are available at:
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130
Our First Architecture

- We start with a 32x32x3 input x
Our First Architecture

- In the first convolutional layer, one convolution filter is $5 \times 5 \times 3 = 75$ weights
Our First Architecture

By convolving it throughout the image, with padding,
Our First Architecture

- We can have another filter of the same size, producing a different output layer.
Our First Architecture

► And another one [until now 75*3 weights to learn]
Our First Architecture

- We propose to have 32 of these = 2400 weights (CONV_1)
Following an activation function, we perform max pooling on 2x2 grids.
Our First Architecture

- This is applied for EACH of the 32 output layers
Our First Architecture

- Second conv layer will have 5x5x32 convolutional filter = 800 weights
Our First Architecture

We can have a second one of these filters
Our First Architecture

And a third
Our First Architecture

- We will have 64 of these = 51200, along with max-pooling
Our First Architecture

- Followed by max pooling, for each output layer
Our First Architecture

► Doing this for the second filter,
Our First Architecture

- And for all filters,
Our output size is 4096 dimensions, which we reshape into 1D.
Our First Architecture

Followed by 1 fully-connected layer, (4096x1024 weights)
Our First Architecture

▶ And a final fully connected layer into our 10 classes, (1024x10 weights)
Preparing Lab_2 Portfolio

Double check that you have saved the CSVs and log files we asked you to in tasks 13 & 14. Include your final version of `train_cifar.py` in the portfolio.

Zip these files up so your code, logs, and csvs follow the same structure:

```
Lab_2.<username>.zip
├── train_cifar.py
└── logs
    ├── CNN_bs=256=0.001_run_0  <-- I chose to increase the batch size to 256 for task 14
    │   ├── accuracy_test
    │   │   └── events.out.tfevents.1567865348.bc4gpulogin1.bc4.acrc.priv.18893.3
    │   ├── accuracy_train
    │   │   └── events.out.tfevents.1567865335.bc4gpulogin1.bc4.acrc.priv.18893.1
    │   ├── events.out.tfevents.1567865329.bc4gpulogin1.bc4.acrc.priv.18893.0
    │   ├── loss_test
    │   │   └── events.out.tfevents.1567865348.bc4gpulogin1.bc4.acrc.priv.18893.4
    │   ├── loss_train
    │   │   └── events.out.tfevents.1567865335.bc4gpulogin1.bc4.acrc.priv.18893.2
    │   ├── CNN_bs=128_lr=0.001_run_0
    │   │   ├── accuracy_test
    │   │   │   └── events.out.tfevents.1567865348.bc4gpulogin1.bc4.acrc.priv.18893.3
    │   │   ├── accuracy_train
    │   │   │   └── events.out.tfevents.1567865335.bc4gpulogin1.bc4.acrc.priv.18893.1
    │   │   ├── events.out.tfevents.1567865329.bc4gpulogin1.bc4.acrc.priv.18893.0
    │   │   ├── loss_test
    │   │   │   └── events.out.tfevents.1567865348.bc4gpulogin1.bc4.acrc.priv.18893.4
    │   │   └── loss_train
    │   │       └── events.out.tfevents.1567865335.bc4gpulogin1.bc4.acrc.priv.18893.2
├── loss-test.csv
├── loss-test-tweaked-hyperparameter.csv
├── loss-train.csv
└── loss-train-tweaked-hyperparameter.csv
```
And now....

READY....

STEADY....

GO...